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We explore the relationship between R. W. Shephard's input distance function
(``Cost and Production Functions,'' Princeton Univ. Press, Princeton, 1953) and
D. G. Luenberger's benefit function (J. Math. Econ. 21 (1992a), 461�481). We point
out that the latter can be recognized in a production context as a directional input
distance function which can exhaustively characterize technologies in both price
and input space. D. McFadden's (Cost, revenue, and profit functions, in ``Produc-
tion Economics: A Dual Approach to Theory and Applications, ``North-Holland�
Elsevier, New York, 1978) composition rules for input sets and input distance
functions are then extended to the directional input distance function. Journal of
Economic Literature Classification Numbers : D21, D24, D29. � 1996 Academic

Press, Inc.

In a sequence of publications Luenberger [10�14] has introduced and
applied a function he terms the benefit function1, which is a directional
representation of preferences. If u(x) is a utility function, x # X/RN

+, and
g a vector in RN

+, then the benefit function is defined by

b( g ; u, x)=sup
;

[; # R: x&;g # X, u(x&;g)�u].
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1 Luenberger [11, p. 148] traces it back to Dupuit [5]. Blackorby and Donaldson [1]
employ a version of the benefit function, which they call the translation function, in their
study of absolute inequality measurement.



www.manaraa.com
File: 642J 217502 . By:BV . Date:28:08:96 . Time:16:07 LOP8M. V8.0. Page 01:01
Codes: 2955 Signs: 2058 . Length: 45 pic 0 pts, 190 mm

The benefit function can be recognized as a generalization of Shephard's
[17] input distance function, which when defined in terms of the utility
function (Deaton [4]) can be written

Di (u, x)=inf[*: (x�*) # X, u(x�*)�u].

Both functions are useful alternative representations of preferences that
may be exploited to advance different theoretical and empirical objectives.
To wit, Luenberger [10, p. 480] states ``The distance function can be useful
in developing relations in individual consumer theory. The benefit function
has use in developing group welfare relations.''

This paper explores the relationship between the two functions and
shows how each can be derived from the other. We then discuss duality
theorems, shadow prices, and composition rules for the two functions.

1. DISTANCE FUNCTIONS

Although Luenberger has developed the benefit function as a tool in
consumer theory, here we will study it as a tool in production theory.2 Let
y # RM

+ be a vector of outputs and x # RN
+ a vector of inputs. The tech-

nology is represented by input correspondences L: RM
+ � RN

+ which define
input sets L( y)/RN

+:

L( y)=[x: x can produce y], y # RM
+. (1.1)

Following Shephard [18] or Fa� re [6], define the input distance function by

Di ( y, x)=sup[* # R+: (x�*) # L( y)]. (1.2)

This function inherits the properties imposed on the technology, see
Shephard [18] or Fa� re [6], and in particular, assuming weak disposability
of inputs, i.e., x # L( y) O *x # L( y), for *�1,

Di (y, x)�1 if and only if x # L(y), (1.3)

which shows that the input distance function is a complete function
representation of the technology. Hence, conditions on the technology can
be equivalently expressed in terms of the input distance function or the
input set. Moreover, from its definition it follows that the distance function
is homogeneous of degree +1 in inputs. This property has proved espe-
cially useful in the construction of index numbers using distance functions
(Malmquist [16], and Caves et al. [2]).

408 CHAMBERS, CHUNG, AND FA� RE

2 Luenberger introduced the notion of a shortage function in his studies of production.
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To motivate our terminology, let us first recall the notion of a direction.
Let x and g be fixed vectors in Rn, then

z=x+;g, ; # R (1.4)

defines a line in the direction of g. Clearly the benefit function may also be
thought of as a directional concept. Thus we define D9 i : RM

+_RN
+_RN � R

by

D9 i ( y, x; g)=sup
;

[; # R: x&;g # L( y)],

=sup[; # R: x # ;g+L( y)] (1.5)

as the directional input distance function.3 It is, of course, the benefit func-
tion for L( y) as defined by Luenberger. Moreover, the second equality
shows that the benefit function or directional input distance function is the
maximal translation of L( y) along g that permits keeping x feasible.

Three special cases are illustrated in Fig. 1a, 1b, and 1c. In Fig. 1a,
x # L( y) and D9 i ( y, x; g) is given by the ratio &g*&�&g&>0. In Fig. 1b,
x � L( y) but moving x in the direction of g eventually encounters L( y). Here
D9 i( y, x; g)=&&g*&�&g&<0. Figure 1c illustrates the case where moving x
in the direction of g never encounters L( y), and thus D9 i ( y, x; g)=&�.

The basic properties of the directional input distance function are sum-
marized by the following lemma which slightly expands results due to
Luenberger [10] (all proofs are in the Appendix).

(1.6) Lemma. D9 i : RM
+_RN

+_RN
+ � R satisfies :

(1) if L( y) is convex for all y # RM
+, D9 i ( y, x; g) is concave with

respect to x;

(2) D9 i ( y, x+:g; g)=D9 i ( y, x; g)+: for : # R+;

(3) x # L( y) implies that D9 i ( y, x; g)�0;

(4) D9 i ( y, x; +g)=(1�+) D9 i ( y, x; g), for +>0.

(5) (a) if y$ � y O L( y$ ) / L( y), then y$ � y O D9 i ( y$, x; g) �
D9 i ( y, x; g);

(b) if L( y)/L(*y), 0<*<1, then D9 i ( y, x; g)�D9 i(*y, x ; g);

(6) if x # L( y) O *x # L( y) for *>1, then D9 i ( y, *x ; g)�*D9 i ( y, x; g)
=D9 i ( y, x; g�*).

409BENEFIT AND DISTANCE FUNCTIONS

3 Directional output distance functions and undesirable outputs are studied by Chung [3]
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Fig. 1. Directional input distance functions.

. .
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Because Di ( y, x)�1 if and only if x # L(y) under weak input dis-
posability, the directional distance function can also be defined as

D9 i ( y, x ; g)=sup[; # R: Di ( y, x&;g)�1]. (1.7)

Expression (1.7) shows that the directional input distance function can be
obtained from the input distance function. We now show that by an
appropriate choice of g, we can always recover Di ( y, x) and hence L( y)
from D9 i ( y, x; g). In particular, for g=x,

D9 i ( y, x ; x)=sup[; # R: x(1&;) # L( y)]

=1&inf[(1&;): x(1&;) # L( y), ; # R]

=1&inf[(1&;) # R+: x(1&;) # L( y), ; # R]

=1&1�Di ( y, x), (1.8)

where the third equality follows from the fact that L( y)/RN
+. By a similar

argument, it follows that Di ( y, x)=1�D9 i ( y, 0; &x). Using (1.3), it is
immediate from (1.8) that under weak disposability of inputs,

D9 i ( y, x; x)�0 � x # L( y). (1.9)

Under free input disposability, i.e., x$�x # L( y) O x$ # L( y), expression
(1.9) for g # RN

+ can be strengthened to

D9 i ( y, x; g)�0 � x # L( y). (1.9$)

That D9 i ( y, x; g)�0 for x # L( y) follows immediately from (1.6.3). To
prove the converse, suppose first that D9 i ( y, x; g) equals zero; it is then
immediate that x # L( y). Now suppose that D9 i ( y, x ; g)>0, and note that
x�x&D9 i ( y, x; g) g # L( y) which yields x # L( y) under free disposability.
Under appropriate disposability assumptions, D9 i ( y, x; g) is a complete
function representation of L( y).

A third input distance function, the affine distance function, has been
introduced by Fa� re and Lovell [8]. This distance function is defined as

D0
i ( y, x; x0)=[inf[*: x0+*x # L( y)]]&1=[inf[*: *x # L( y)&x0]]&1

=[inf[*: Di ( y, x0+*x)�1]]&1. (1.10)

If x=x0, then

D0
i ( y, x ; x)=[inf[*: Di ( y, x+*x)�1]]&1

=Di ( y, x)�(1&Di ( y, x)), (1.11)

411BENEFIT AND DISTANCE FUNCTIONS
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or equivalently

Di ( y, x)=D0
i ( y, x; x)�(1+D0

i ( y, x ; x)). (1.12)

Expressions (1.9) and (1.10) show one relationship between Shephard's
input distance function and the affine distance function. Of course if x0=0
then the two distance functions are equal. Note also that the affine and the
directional distance functions are related by

D9 i ( y, x0; &x)=1�D0
i ( y, x ; x0), (1.13)

or since D9 i ( y, x; g) is homogeneous of degree &1 in g,

D9 i ( y, x0; x) D0
i ( y, x; x0)=&1. (1.14)

Summarizing the preceding, we have:

(1.15) Proposition. Let Di ( y, x), D9 i ( y, x; g), and D0
i ( y, x; x0) denote

the input distance function, the directional input distance function, and the
affine input distance function, respectively. If x # L( y) O *x # L( y) for *>1,
then:

(1) D9 i( y, x; x)�0 � x # L( y);

(2) D9 i ( y, x; x)=1&1�Di ( y, x); and

(3) D9 i ( y, x0; &x)=1�D0
1 ( y, x ; x0).

If x$�x # L( y) O x$ # L( y), then

(4) D9 i ( y, x; g)�0 � x # L( y) for g # RN
+.

2. DUALITIES AND SHADOW PRICES

The directional and the usual distance functions are both primal
representations of the technology, expressed by input requirements sets
L( y), y # RM

+. The dual representation of the technology is, of course, given
by the cost function. Let w # RN

+ denote a vector of input prices; the cost
function (or the expenditure function in consumer theory) is then given by

C( y, w)=inf
x

[wx: x # L( y)], y # RM
+ (2.1)

or equivalently

C( y, w)=inf
x

[wx: Di ( y, x)�1], y # RM
+. (2.2)

412 CHAMBERS, CHUNG, AND FA� RE



www.manaraa.com
File: 642J 217507 . By:BV . Date:28:08:96 . Time:16:07 LOP8M. V8.0. Page 01:01
Codes: 2599 Signs: 1267 . Length: 45 pic 0 pts, 190 mm

Shephard [17, 18] proved that if the input correspondence, L, satisfies (we
always presume these hold in what follows) L(0)=RN

+ , 0 � L( y) for y�0,
y{0; L is a closed correspondence; free input disposability; and L( y) is
convex for all y # RM

+ , then the cost and the input distance functions are
dual to each other:

C( y, w)=inf
x

[wx: Di ( y, x)�1], y # RM
+ (2.3)

Di ( y, x)=inf
w

[wx: C( y, w)�1], y # RM
+. (2.4)

From (1.8) it now follows immediately that under weak input disposability

C( y, w)=inf
x

[wx: D9 i ( y, x; x)�0]

and

D9 i ( y, x; x)=1&1�inf
w

[wx: C( y, w)�1].

Shephard's duality theorem can also be expressed as a pair of
unconstrained optimization problems, namely,4

C( y, w)=inf
x

[wx�Di ( y, x)], y # RM
+ , (2.5)

Di ( y, x)=inf
w

[wx�C( y, w)], y # RM
+. (2.6)

Luenberger [10, 14] proves, under the same conditions as above, a
duality theorem between goods and goods prices. His theorem can be
stated in our terminology as

C( y, w)=inf
x

[wx&D9 i ( y, x ; g) wg] (2.7)

D9 i ( y, x; g)=inf
w

[wx&C( y, w): wg=1]. (2.8)

This duality theorem like Shephard's shows that inputs x and deflated
input prices w are dual. The Luenberger duality theorem can also be
expressed as a pair of unconstrained optimization problems, namely,

C( y, w)=inf
x

[wx&D9 i ( y, x ; g) } wg] (2.9)

D9 i ( y, x; g)=inf
w {wx&C( y, w)

wg = . (2.10)

413BENEFIT AND DISTANCE FUNCTIONS

4 See Fa� re and Primont [9].
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By choosing g=x, expression (2.9) reduces to (2.5), and (2.10) reduces
to (2.6), showing that the Fa� re and Primont formulation of Shephard's
(input) duality theorem is a consequence of the Luenberger duality
theorem.

Fa� re and Grosskopf [7] developed a dual Shephard's lemma and
showed that virtual prices can be derived from the distance function.
Assuming that the cost and input distance functions are both differentiable,
they showed that

wn=C( y, w)
�Di ( y, x)

�xn
, n=1, ..., N. (2.11)

This result follows from applying the envelope theorem to expression (2.3).
In the same way, by applying the envelope theorem to (2.7), the adjusted
price function of Luenberger is derived, namely

wn=wg
�D9 i ( y, x; g)

�xn
, n=1, ..., N. (2.12)

The last two expressions are two variations on the dual Shephard's lemma.
Their difference consists of the different scaling factors, C(y, w) versus wg.

3. COMPOSITION RULES FOR DIRECTIONAL
DISTANCE FUNCTION

McFadden [15] has presented a tabular representation of equivalent
structural restrictions on the technology stated in dual and primal terms.
Our next result extends McFadden's existing composition rules on input
sets to the directional input distance function.

(3.1) Proposition. Let L j( y)/RN
+ ( j=1, ..., J ) represent convex input

sets satisfying free disposability of inputs, D9 j
i ( y, x ; g) ( j=1, ..., J) the

corresponding directional input distance functions, D9 zj
i ( y, x; g) the direc-

tional input distance function for zjL j( y) where zj # R+, and L*( y) a
convex input set satisfying free disposability of inputs: Then the following
pairs of representations of the technology are equivalent:

(a) L0( y)=a( y) L1( y) where a : RM
+ � R++ ,

(a$) D9 0
i ( y, x; g)=D9 1

i \y,
x

a( y)
,

g
a( y)+=a(y) D9 1

i \y,
x

a( y)
, g+ ,

414 CHAMBERS, CHUNG, AND FA� RE
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(b) L0( y)=[A( y)x: x # L1( y)] where A( y) is a diagonal N_N
matrix with strictly positive diagonal elements,

(b$) D9 0
i ( y, x; g)=D9 1

i ( y, A&1( y) x, A&1( y) g),

(c) L0( y)= :
J

j=1

L j( y),

(c$) D9 0
i ( y, x ; g)=sup { min

j=1, ..., J
[D9 j

i ( y, x j, g j)]:

x j�0, :
J

j=1

x j=x; :
J

j=1

g j=g=,

(d) L0( y)= ,
J

j=1

L j( y),

(d$) D9 i ( y, x; g)= min
j=1, ..., J

[D9 j
i ( y, x; g)],

(e) L0( y)=convex hull of .
J

j=1

L j( y),

(e$) D9 0
i ( y, x; g)=sup { min

j=1, ..., J
[D9 zj

i ( y, x j, g j)]:

:
J

j=1

x j=x, :
J

j=1

g j=g, zj # R+( j=1, ..., J ),

:
J

j=1

zj=1= ,

(f ) L0( y)= .

�J
j=1 zj=1

zj # R+

,
J

j=1

zj Lj( y)

(f $) D9 0
i ( y, x; g)=sup

z { min
j=1, ..., J

[D9 zj
i ( y, x, g)]:

:
J

j=1

zj=1, zj # R+, j=1, ..., J = ,

415BENEFIT AND DISTANCE FUNCTIONS
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(g) L0( y)= .
z # L*( y)

:
J

j=1

zjL j( y),

(g$) D9 0
i ( y, x; g)

=sup { min
j=1, ..., J

[D9 zj
i ( y, x j, g j)]:x j�0, : x j=x,

:
J

j=1

g j=g, z # L*( y)= ,

(h) L0( y)=closure { .
z # L*( y)

,
J

j=1

zjL j( y)= ,

(h$) D9 0
i ( y, x; g)= sup

z # L*( y)

[ min
j=1, ..., J

[D9 zj
i ( y, x; g)]].

APPENDIX

Proof of (1.6) Lemma. (1), (2), and (3) are proven in Luenberger [10].
If y$�y O L( y$ )/L( y) then x&D9 i ( y$, x; g) g # L( y); hence, D9 i ( y, x; g)�
D9 i ( y$, x; g) which shows (5a), (5b) follows similarly. To establish (4), note
that

D9 i ( y, x; +g)=sup[ ; # R: x&;+g # L( y)]

=
1
+

sup[;+ # R: x&;+g # L( y)]

=
1
+

D9 i ( y, x, g).

If x # L( y) O *x # L( y), for *�1, then *(x&D9 i ( y, x; g) g) # L( y) whence
D9 i ( y, *x; g)�*D9 i ( y, x; g)=D9 i ( y, x; g�*) by (1.6.4), which establishes (6).

Q.E.D.

Proof of (3.1) Proposition. We only prove ( ) O ( $ ) in each case. The
converse is straightforward upon using (1.9$) and is left to the reader.

(a) implies that

D9 0
i ( y, x, g)=sup[ ; # R: x&;g # L0( y)]

=sup[ ; # R: x&;g # a( y) L1( y)]

416 CHAMBERS, CHUNG, AND FA� RE
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=sup {; # R:
x

a( y)
&;

g
a( y)

# L1( y)=
=D9 1

i \ y,
x

a( y)
,

g
a( y)+

=a( y) D9 1
i \ y,

x
a( y)

, g+ ,

where the last equality follows by (1.6.4). This establishes that (a) O (a$);
(b) and (b$) are derived similarly. By (c)

L0( y)= :
J

j=1

L j( y),

and thus

x&;g # L0( y)

implies that there exist nonnegative allocations x j, g j such that

x j&;g j # L j( y),

j=1, ..., J, from which it immediately follows that

;�D9 j
i ( y, x j, g j) j=1, ..., J

so that for any arbitrary nonnegative allocation x j, g j such that
� J

j=1 x j=x, � J
j=1 g j=g, the largest that such a ; can be is

min
j=1, ..., J

[D9 j
i ( y, x j, g j)],

where the preceding notation denotes the minimum over the set of direc-
tional input distance functions. Hence,

D9 0
i ( y, x; g)=sup { min

j=1, ... J
[D9 j

i ( y, x j, g j)]:

:
J

j=1

g j=g, :
J

j=1

x j # RN
+ , j=1, ..., J = .

By (d)

x&D9 0
i ( y, x; g) g # L j( y)

417BENEFIT AND DISTANCE FUNCTIONS
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for j=1, ..., J. Hence,

D9 0
i ( y, x; g)�D9 j

i ( y, x; g)

whence

D9 0
i ( y, x; g)= min

j=1, ..., J
[D9 j

i ( y, x; g)].

By (e) L0( y)=convex hull of � J
j=1 L j( y) which implies that

L0( y)={x: x # :
J

j=1

zjL j( y), zj # R+ , :
J

j=1

zj=1=.

Hence, if x&;g # L0( y), there must exist nonnegative allocations x j, g j

with � J
j=1 x j=x, � J

j=1 g j=g, such that

x j&;g j # zjL j( y)

for some set of zj's. Recall that

D9 zj
i ( y, x j, g j)=sup[; # R: x j&;g j # zjL j( y)].

Now follow the proof of (c$ ) to obtain (e$).
From (3.1d) and (3.1d$) for any fixed z, zj # R+ , � J

j=1 zj=1, (f ) implies
that

D9 0
i ( y, x; g)= min

j=1, ..., J
[D9 zj

i ( y, x; g)].

Hence, for arbitrary z

D9 0
i ( y, x; g)=sup { min

j=1, ..., J
[D9 zj

i ( y, x; g)]:

zj # R+ , j=1, ..., J, :
J

j=1

zj=1= .

That (g$) follows from (g) can be shown by applying (c) and (c$) for a fixed
element ẑ # L*(y).

To prove (h) and (h$), first note that McFadden [15] shows that (h)
implies that

D0
i ( y, x)=Di*( y, D1

i ( y, x), ..., D J
i ( y, x)).

418 CHAMBERS, CHUNG, AND FA� RE
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Applying (1.7),

D9 0
i ( y, x; g)=sup[; # R: Di*( y, D1

i ( y, x&;g), ..., D J
i ( y, x&;g))�1]

=sup[ ; # R: Di*( y, z)�1, Dk
i ( y, x&;g)�zk�0, k=1, ..., J ]

Because Dk
i ( y, x&;g)�zk for all k we can now apply (3.1d) and (3.1d$ )

to obtain

D9 0
i ( y, x; g)= sup

z # L*( y)

[ min
j=1, ..., J

[D9 zj
i ( y, x; g)]]. Q.E.D.
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